Partial symmetry, reflection monoids and Coxeter groups
نویسنده
چکیده
This is the first of a series of papers in which we initiate and develop the theory of reflection monoids, motivated by the theory of reflection groups. The main results identify a number of important inverse semigroups as reflection monoids, introduce new examples, and determine their orders.
منابع مشابه
Partial mirror symmetry I: reflection monoids
This is the first of a series of papers in which we initiate and develop the theory of reflection monoids, motivated by the theory of reflection groups. The main results identify a number of important inverse semigroups as reflection monoids, introduce new examples, and determine their orders. Introduction The symmetric group Sn comes in many guises: as the permutation group of the set {1, . . ...
متن کاملLogspace Computations in Graph Groups and Coxeter Groups
Computing normal forms in groups (or monoids) is in general harder than solving the word problem (equality testing). However, normal form computation has a much wider range of applications. It is therefore interesting to investigate the complexity of computing normal forms for important classes of groups. We show that shortlex normal forms in graph groups and in right-angled Coxeter groups can ...
متن کاملLogspace computations in Coxeter groups and graph groups
Computing normal forms in groups (or monoids) is computationally harder than solving the word problem (equality testing), in general. However, normal form computation has a much wider range of applications. It is therefore interesting to investigate the complexity of computing normal forms for important classes of groups. For Coxeter groups we show that the following algorithmic tasks can be so...
متن کاملAn asymmetric generalisation of Artin monoids
We propose a slight weakening of the definitions of Artin monoids and Coxeter monoids. We study one ‘infinite series’ in detail.
متن کاملOn Coxeter Diagrams of complex reflection groups
We study complex Coxeter diagrams of some unitary reflection groups. Using solely the combinatorics of diagrams, we give a new proof of the classification of root lattices defined over E = Z[e2πi/3]: there are only four such lattices, namely, the E–lattices whose real forms are A2, D4, E6 and E8. Next, we address the issue of characterizing the diagrams for unitary reflection groups, a question...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008